
DSU
Disjoint Set Union

Basic Problem
We have an undirected graph with N nodes and 0 edges. Process Q queries of
the following types in order:

● Add an edge between u and v
● Check whether u and v are in the same connected component

1 <= N, Q <= 2×10⁵

Example Input/Output
N = 4, Q = 7
CHECK 1 2
UNION 1 2
UNION 3 4
CHECK 1 2
CHECK 2 3
UNION 1 3
CHECK 2 4

1 2

34

NO

YES
NO

YES

Observations
● We only care about connectivity - the edges in a connected component

don’t actually matter
○ E.g. (1)--(2)--(3) is effectively the same as (1)--(3)--(2)

● If we assign a “representative” node to each connected component, then we
can quickly identify them
○ We can point all nodes in a component to the representative
○ When we join components, point each node in the first to the representative of the second
○ Too slow if we do this naively

1

4 5 6 7 8

2

9

3

UNION 4 7:

Optimization 1
● When we join components, we point only the representative of the first

component to the representative of the second
● This way, we can just follow a path to get a representative (call this FIND)
● UNION is now O(FIND)
● Still too slow without further optimizations

○ What happens when we have “UNION x x-1” for each x from 2 to N?
○ “FIND 1” will take O(N) time

1

4 5 6 7 8

2

9

3

UNION 4 7:

Optimization 2 (Union by Rank/Path Balancing)
● Point the representative of the smaller component to the bigger component
● FIND complexity is now O(log N)
● See Wikipedia for a proof

Optimization 3 (Path Compression)
● When traversing the graph to find a representative, point each visited node

to its parent’s parent
● This speeds up future FIND queries
● FIND complexity is now O(α(N)), where α is the Inverse-Ackermann function

○ α(N) grows very slowly and is effectively constant

(You don’t need union by rank if you use path compression)

Code
int cmp[100001];

int find(int A) {
 while (A == cmp[A]) cmp[A] = cmp[cmp[A]], A = cmp[A];
 return A;
}

void onion(int A, int B) { cmp[find(A)] = find(B); }

int main() {
 iota(cmp + 1, cmp + n + 1, 1);
}

std=:iota fills cmp with 1, 2, …, N
because we want each node to
point to itself

I use onion because union is a
reserved keyword in C++

We can store additional information too!
Size of the component, number of edges in the component, etc.

We can merge this information in UNION

Example Problem - COCI 2020 Sjekira
You should remember this problem: https://oj.uz/problem/view/COCI20_sjekira

Solution sketch:

● It’s optimal to “isolate” the hardest node (i.e. chop all of its incident edges)
● Querying the maximum hardness in trees that can be cut is inconvenient, so

we process the chopped edges backwards (i.e. join trees by adding edges)
● Use DSU to find the maximum hardness in the trees we join

https://oj.uz/problem/view/COCI20_sjekira

DSU Code for Sjekira
int find(int A) {
 while (cmp[A] == A) cmp[A] = cmp[cmp[A]], A = cmp[A];
 return A;
}

void onion(int A, int B) {
 A = find(A), B = find(B);
 if (A == B) return;
 ans += hardness[A] + hardness[B];
 hardness[B] = max(hardness[B], hardness[A]);
 cmp[A] = B;
}

Notice how we can store additional
information about components

Other Cool Things You Can Do With DSU
● Minimum spanning trees

○ A tree that connects all nodes and has the minimum sum of edge weights
○ E.g. COCI 2020 Odašiljači

● Checking whether a graph is bipartite
○ Basically checking whether there exists an odd cycle in the graph

● DSU with rollback
○ Undo UNION queries
○ You can’t use path compression, so you have to use union by rank
○ E.g. APIO 2019 Bridges

● DSU tree
○ Useful for finding all nodes reachable after a certain UNION query
○ E.g. IOI 2018 Werewolf

Practice Problems (Roughly Ordered; No MST)
● USACO 2018 Mootube http://www.usaco.org/index.php?page=viewproblem2&cpid=789

● SAPO 2019 Jump https://saco-evaluator.org.za/cms

● Croatian OI 2015 Kovanice https://oj.uz/problem/view/COI15_kovanice

● Baltic OI 2016 Park https://oj.uz/problem/view/BOI16_park

● USACO 2020 Favorite Colors http://www.usaco.org/index.php?page=viewproblem2&cpid=1042

● APIO 2020 Swapping Cities https://oj.uz/problem/view/APIO20_swap

● IOI 2018 Werewolf http://oj.uz/problem/view/IOI18_werewolf

● USACO 2019 Valleys http://www.usaco.org/index.php?page=viewproblem2&cpid=950

● APIO 2019 Bridges https://oj.uz/problem/view/APIO19_bridges

● SAPO 2017 Stargazing https://saco-evaluator.org.za/cms

● JOISC 2017 Port Facility https://oj.uz/problem/view/JOI17_port_facility

http://www.usaco.org/index.php?page=viewproblem2&cpid=789
https://saco-evaluator.org.za/cms/
https://oj.uz/problem/view/COI15_kovanice
https://oj.uz/problem/view/BOI16_park
http://www.usaco.org/index.php?page=viewproblem2&cpid=1042
https://oj.uz/problem/view/APIO20_swap
http://oj.uz/problem/view/IOI18_werewolf
http://www.usaco.org/index.php?page=viewproblem2&cpid=950
https://oj.uz/problem/view/APIO19_bridges
https://saco-evaluator.org.za/cms/
https://oj.uz/problem/view/JOI17_port_facility

