DSU

Disjoint Set Union



Basic Problem

We have an undirected graph with N nodes and 0 edges. Process Q queries of
the following types in order:

e Add an edge between uandyv
e Check whether u and v are in the same connected component

1<=N, Q <=2x10°



Example Input/Output

N=4,Q=7

CHECK
UNION
UNION
CHECK
CHECK
UNION
CHECK

1

N R, NP W R

A W W NN BADNNDN

NO

YES
NO

YES




Observations

e We only care about connectivity - the edges in a connected component
don't actually matter
o E.g. (1)--(2)--(3) is effectively the same as (1)--(3)--(2)
e If we assign a “representative” node to each connected component, then we
can quickly identify them
o We can point all nodes in a component to the representative

o When we join components, point each node in the first to the representative of the second
o Too slow if we do this naively

UNION 4 7:




Optimization 1

e When we join components, we point only the representative of the first
component to the representative of the second

e This way, we can just follow a path to get a representative (call this FIND)

e UNION is now O(FIND)

e Still too slow without further optimizations

o What happens when we have “UNION x x-1"for each x from 2 to N?
o “FIND 1” will take O(N) time

UNION 4 7:




Optimization 2 (Union by Rank/Path Balancing)

e Point the representative of the smaller component to the bigger component
e FIND complexity is now O(log N)
e See Wikipedia for a proof



Optimization 3 (Path Compression)

e When traversing the graph to find a representative, point each visited node
to its parent’s parent
e This speeds up future FIND queries

e FIND complexity is now O(a(N)), where a is the Inverse-Ackermann function
o a(N) grows very slowly and is effectively constant

(You don’t need union by rank if you use path compression)



Code

int cmp[100001];

int find(int A) {
while (A == cmp[A]) cmp[A] = cmp[cmp[All, A = cmp[Al;

return A;

1 | use onion because unionis a
reserved keyword in C++

void onion(int A, int B) { cmp[find(A)] = find(B); }

int main() { std::iota fills cmp with 1, 2, ..., N

iota(cmp + 1, cmp + n + 1, 1); because we want each node to
! point to itself




We can store additional information too!

Size of the component, number of edges in the component, etc.

We can merge this information in UNION



Example Problem - COCI 2020 Sjekira

You should remember this problem: https://oj.uz/problem/view/COCI20 sjekira

Solution sketch:

It's optimal to “isolate” the hardest node (i.e. chop all of its incident edges)
Querying the maximum hardness in trees that can be cut is inconvenient, so
we process the chopped edges backwards (i.e. join trees by adding edges)

e Use DSU to find the maximum hardness in the trees we join


https://oj.uz/problem/view/COCI20_sjekira

DSU Code for Sjekira

int find(int A) {
while (cmp[A] == A) cmp[A] = cmplcmp[Al]l, A = cmp[A];
return A;

[Notice how we can store additional }

void onion(int A, int B) { information about components

A = find(A), B = find(B);
if (A = B) return;

ans += hardness[A] + hardness[B];
hardness[B] = max(hardness[B], hardness[A]l);
cmp[A] = B;




Other Cool Things You Can Do With DSU

e Minimum spanning trees
o Atree that connects all nodes and has the minimum sum of edge weights
o E.g. COCI 2020 Odasiljaci

e Checking whether a graph is bipartite

o Basically checking whether there exists an odd cycle in the graph

e DSU with rollback
o Undo UNION queries
o You can’t use path compression, so you have to use union by rank
o E.g. APIO 2019 Bridges

e DSU tree

o Useful for finding all nodes reachable after a certain UNION query
o E.g. 1012018 Werewolf



Practice Problems (Roughly Ordered; No MST)

USACO 2018
SAPO 2019
Croatian Ol 2015
Baltic Ol 2016
USACO 2020
APIO 2020

|0l 2018
USACO 2019
APIO 2019
SAPO 2017
JOISC 2017

Mootube

Jump

Kovanice

Park

Favorite Colors
Swapping Cities
Werewolf
Valleys
Bridges
Stargazing
Port Facility

http://www.usaco.org/index.php?page=viewproblem2&cpid=789

https://saco-evaluator.org.za/cms

https://oj.uz/problem/view/COI15 kovanice

https://oj.uz/problem/view/BOI16 park

http://www.usaco.org/index.php?page=viewproblem28&cpid=1042

https://oj.uz/problem/view/AP1020 swap

http://oj.uz/problem/view /10118 werewolf

http://www.usaco.org/index.php?page=viewproblem28&cpid=950

https://oj.uz/problem/view/AP1019 bridges

https://saco-evaluator.org.za/cms

https://oj.uz/problem /view/]OI17 port facility



http://www.usaco.org/index.php?page=viewproblem2&cpid=789
https://saco-evaluator.org.za/cms/
https://oj.uz/problem/view/COI15_kovanice
https://oj.uz/problem/view/BOI16_park
http://www.usaco.org/index.php?page=viewproblem2&cpid=1042
https://oj.uz/problem/view/APIO20_swap
http://oj.uz/problem/view/IOI18_werewolf
http://www.usaco.org/index.php?page=viewproblem2&cpid=950
https://oj.uz/problem/view/APIO19_bridges
https://saco-evaluator.org.za/cms/
https://oj.uz/problem/view/JOI17_port_facility

